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Mapping from s-plane to z-plane (from last lecture) 

  Since                                                 where T = 2π/ωs 

 we can map the s-plane to the z-plane as below:  
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Frequency Response from pole-zero locations (1) 

  The transfer function H[z] can be expressed in factorised polynomial: 

  We have established that the frequency response is given by           . 
  Therefore we can compute the frequency be evaluating H[z] at z=ejΩ, 

which is the unity circle. 
  Each term (z-zi) can be evaluated as shown: 

[ ]jH e Ω

L5.6 p544 

Lecture 17 Slide 4 PYKC 10-Mar-11 E2.5 Signals & Linear Systems 

Frequency Response from pole-zero locations (2) 

  Therefore, for all the poles and zeros, we can use the graphical method 
(similar to the s-plane case): 

  The amplitude response is: 

  The phase response is: 
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Pole-Zero locations & Filtering (1) 

  Therefore, for all the poles and zeros, we can use the graphical method 
(similar to the s-plane case): 

s-plane 
z-plane 

Evaluate H(jω)=1/d 

d 

je Ω

Evaluate H[ejΩ]=1/d 
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Pole-Zero locations & Filtering (2) 
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Example – a bandpass filter (1) 

  Derive the amplitude response of a discrete-time system having a 
sampling frequency of 1000 Hz, and with zeros at (z=1) and (z=0), and 
poles at                    and                     . 

  The transfer function is: 

  Note that analogue frequency ω 
corresponds to digital frequency Ω= ωT, 
where T is the sampling period (i.e. 10-3). 

  Hence Ω=π/4 corresponds to ω=250π or      
f =125Hz. 
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Example – a bandpass filter (2) 

  Therefore, we have: 
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Example – a bandpass filter (3) 

  We can implement this digital filter as: 
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Example – a bandstop (notch) filter (1) 

  Design a second-order notch filter to have zero transmission (i.e notch) 
at 250Hz.  Assume sample frequency to be 1000Hz. 

  One revolution around unity circuit corresponds to 1000Hz, the sampling 
frequency range. 

  Therefore 250Hz corresponds to Ω=2πx250/1000=π/2. 

  Therefore place two zeros on unity circle 
at Ω=±π/2 to form the notch. 

  To make the recovery around the notch 
frequency “fast”, place two poles as 
shown at distance a from origin. 
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Example – a bandstop (notch) filter (2) 

  Therefore, the square of the magnitude response is: 


