Lecture 17

Digital Filters

(Lathi 5.6)

Peter Cheung
Department of Electrical \& Electronic Engineering
Imperial College London
URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals E-mail: p.cheung@imperial.ac.uk

| PYKC 10-Mar-11 \quad E2.5 Signals \& Linear Systems | Lecture 17 Slide 1 |
| :--- | :--- | :--- |

Frequency Response from pole-zero locations (1)

- The transfer function $\mathrm{H}[z]$ can be expressed in factorised polynomial:

$$
H[z]=b_{0} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{N}\right)}{\left(z-\gamma_{1}\right)\left(z-\gamma_{2}\right) \cdots\left(z-\gamma_{N}\right)}
$$

- We have established that the frequency response is given by $H\left[e^{j \Omega}\right]$.
- Therefore we can compute the frequency be evaluating $\mathrm{H}[z]$ at $z=e^{\mathrm{j} \Omega}$, which is the unity circle.
- Each term $\left(z-z_{i}\right)$ can be evaluated as shown:

Mapping from s-plane to z-plane (from last lecture)

- Since $z=e^{s T}=e^{(\sigma+j \omega) T}=e^{\sigma T} e^{j \omega T}$ where T $=2 \pi / \omega_{\mathrm{s}}$ we can map the s-plane to the z-plane as below:

Frequency Response from pole-zero locations (2)

- Therefore, for all the poles and zeros, we can use the graphical method (similar to the s-plane case):
- The amplitude response is:
$\left|H\left[e^{j \Omega}\right]\right|=b_{0} \frac{r_{1} r_{2} \cdots r_{N}}{d_{1} d_{2} \cdots d_{N}}$
$=b_{0} \frac{\text { product of the distances of zeros to } e^{j \Omega}}{\text { product of distances of poles to } e^{j \Omega}}$
- The phase response is:
$\angle H\left[e^{j \Omega}\right]=\left(\phi_{1}+\phi_{2}+\cdots+\phi_{N}\right)-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{N}\right)$
$=$ sum of zero angles to $e^{j \Omega}-$ sum of pole angles to $e^{j \Omega}$
- Therefore, for all the poles and zeros, we can use the graphical method (similar to the s-plane case):

Example - a bandpass filter (1)

- Derive the amplitude response of a discrete-time system having a sampling frequency of 1000 Hz , and with zeros at ($z=1$) and ($z=0$), and poles at $\gamma_{1}=|\gamma| e^{j \pi / 4}$ and $\gamma_{2}=|\gamma| e^{-j \pi / 4}$
- The transfer function is:

$$
\begin{aligned}
H[z] & =\frac{(z-1)(z+1)}{\left(z-|\gamma| e^{j \pi / 4}\right)\left(z-|\gamma| e^{-j \pi / 4}\right)} \\
& =\frac{z^{2}-1}{z^{2}-\sqrt{2}|\gamma| z+|\gamma|^{2}}
\end{aligned}
$$

- Note that analogue frequency ω corresponds to digital frequency $\Omega=\omega T$, where T is the sampling period (i.e. 10^{-3}).
- Hence $\Omega=\pi / 4$ corresponds to $\omega=250 \pi$ or $f=125 \mathrm{~Hz}$.

Example - a bandpass filter (2)

- Therefore, we have:

$$
\left|H\left[e^{j \Omega}\right]\right|=\frac{\left|e^{j 2 \Omega}-1\right|}{\left|e^{j \Omega}-|\gamma| e^{j \pi / 4}\right|\left|e^{j \Omega}-|\gamma| e^{-j \pi / 4}\right|}
$$

$$
\left|H\left[e^{j \Omega}\right]\right|^{2}=\frac{2(1-\cos 2 \Omega)}{\left[1+|\gamma|^{2}-2|\gamma| \cos \left(\Omega-\frac{\pi}{4}\right)\right]\left[1+|\gamma|^{2}-2|\gamma| \cos \left(\Omega+\frac{\pi}{4}\right)\right]}
$$

Example - a bandpass filter (3)

Example - a bandstop (notch) filter (1)

- We can implement this digital filter as:

Design a second-order notch filter to have zero transmission (i.e notch) at 250 Hz . Assume sample frequency to be 1000 Hz .

- One revolution around unity circuit corresponds to 1000 Hz , the sampling frequency range.
- Therefore 250 Hz corresponds to $\Omega=2 \pi \times 250 / 1000=\pi / 2$.
- Therefore place two zeros on unity circle at $\Omega= \pm \pi / 2$ to form the notch.
- To make the recovery around the notch frequency "fast", place two poles as shown at distance a from origin.

$$
\begin{aligned}
H[z] & =\frac{(z-j)(z+j)}{(z-j a)(z+j a)} \\
& =\frac{z^{2}+1}{z^{2}+a^{2}}
\end{aligned}
$$

Example - a bandstop (notch) filter (2)

- Therefore, the square of the magnitude response is:

$$
\begin{aligned}
\left|H\left[e^{j \Omega}\right]\right|^{2} & =\frac{\left(1+a^{2}\right)^{2}}{4} \frac{\left(e^{j 2 \Omega}+1\right)\left(e^{-j 2 \Omega}+1\right)}{\left(e^{j 2 \Omega}+a^{2}\right)\left(e^{-j 2 \Omega}+a^{2}\right)} \\
& =\frac{\left(1+a^{2}\right)^{2}(1+\cos 2 \Omega)}{2\left(1+a^{4}+2 a^{2} \cos 2 \Omega\right)}
\end{aligned}
$$

PYKC 10-Mar-11
E2.5 Signals \& Linear Systems

