Mapping from s-plane to z-plane (from last lecture)

Frequency Response from pole-zero locations (1)

• The transfer function H[z] can be expressed in factorised polynomial:

 $H[z] = b_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - \gamma_1)(z - \gamma_2) \cdots (z - \gamma_N)}$

- We have established that the frequency response is given by $H[e^{j\Omega}]$.
- Therefore we can compute the frequency be evaluating H[z] at z=e^{jΩ}, which is the unity circle.
- Each term (z-z_i) can be evaluated as shown:

r-11

E2.5 Signals & Linear Systems

Lecture 17 Slide 3

• Since $z = e^{sT} = e^{(\sigma + j\omega)T} = e^{\sigma T}e^{j\omega T}$ where $T = 2\pi/\omega_s$ we can map the s-plane to the z-plane as below:

Frequency Response from pole-zero locations (2)

Im

γ₂ × θ₂

 Therefore, for all the poles and zeros, we can use the graphical method (similar to the s-plane case):

z plane

• The amplitude response is:

$$|H[e^{j\Omega}]| = b_0 \frac{r_1 r_2 \cdots r_N}{d_1 d_2 \cdots d_N}$$

$$= b_0 \frac{\text{product of the distances of zeros to } e^{j\Omega}}{\text{product of distances of poles to } e^{j\Omega}}$$

• The phase response is:

 $\angle H[e^{j\Omega}] = (\phi_1 + \phi_2 + \dots + \phi_N) - (\theta_1 + \theta_2 + \dots + \theta_N)$

= sum of zero angles to $e^{j\Omega}$ – sum of pole angles to $e^{j\Omega}$

L5.6 p544

PYKC 10-Mar-11

< Ø

ZI

PYKC 10-Mar-11

Pole-Zero locations & Filtering (1)

Pole-Zero locations & Filtering (2)

• Therefore, for all the poles and zeros, we can use the graphical method (similar to the s-plane case):

Example – a bandpass filter (1)

- Derive the amplitude response of a discrete-time system having a sampling frequency of 1000 Hz, and with zeros at (z=1) and (z=0), and poles at γ₁ = |γ|e^{jπ/4} and γ₂ = |γ|e^{-jπ/4}.
- The transfer function is:

$$H[z] = \frac{(z-1)(z+1)}{(z-|\gamma|e^{j\pi/4})(z-|\gamma|e^{-j\pi/4})}$$
$$= \frac{z^2 - 1}{z^2 - \sqrt{2}|\gamma|z+|\gamma|^2}$$

- Note that analogue frequency ω corresponds to digital frequency Ω= ωT, where T is the sampling period (i.e. 10⁻³).
- Hence $\Omega = \pi/4$ corresponds to $\omega = 250\pi$ or f = 125Hz.

 $z = e^{j\pi/4}$ ($\omega = 250\pi$)
($\omega = 250\pi$)
($\omega = 0$)
($\omega = 0$)

L5.6 p549

Example – a bandpass filter (2)

PYKC 10-Mar-11

E2.5 Signals & Linear Systems

Example – a bandpass filter (3)

Example – a bandstop (notch) filter (2)

Example – a bandstop (notch) filter (1)

- Design a second-order notch filter to have zero transmission (i.e notch) at 250Hz. Assume sample frequency to be 1000Hz.
- One revolution around unity circuit corresponds to 1000Hz, the sampling frequency range.
- Therefore 250Hz corresponds to $\Omega = 2\pi x 250/1000 = \pi/2$.
- Therefore place two zeros on unity circle at Ω=±π/2 to form the notch.
- To make the recovery around the notch frequency "fast", place two poles as shown at distance *a* from origin.

 $H[z] = \frac{(z-j)(z+j)}{(z-ja)(z+ja)}$

 $=\frac{z^2+1}{z^2+a^2}$

PYKC 10-Mar-11

L5.6 p551

E2.5 Signals & Linear Systems

Lecture 17 Slide 10